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Abstract-In a recent publication [I] a simplified general method was developed to determine the response of
impulsively loaded, perfectly plastic, rate-sensitive structures with highly non-linear yield stress-strain rate laws.

In the present paper this approach is extended to encompass the dynamic load application phase. In other
terms, a mathematical model closer to the physical situation is considered, namely, a pressure loaded rather than
an impulsively loaded structural element.

As the prototype ofa general structure the dynamically loaded thin ring is considered. For a constant pressure
pulse, exact and approximate responses are calculated and differ by only a few percent. In the approximate
solution the yield stress is taken to be a constant associated with the peak strain rate (which occurs at the instant
of load termination).

The results suggest that when a dominant plastic mode ofdeformation exists, one should be able to determine
the response of a structure with arbitrary loaded pulse by enforcing an impulse/momentum change condition,
while neglecting forces arising owing to deformation, to determine the initial strain rate distribution. The associ
ated yield stress distribution may be calculated and assumed to be constant at each field point during the entire
motion.

INTRODUCTION

THE dynamic plastic response of rate-sensitive structureshas been the subject of numerous
experimental and analytical studies in recent years. Despite the significant increasing effort
in this area of structural behavior, however, workable engineering methods for realistic
structures are not yet forthcoming.

At the root of the difficulty lies a mathematical problem: the strong nonlinearity of the
plastic rate-sensitive material response. Although most of the effort to date has been focused
on the simpler perfectly plastic rather than strain hardening materials, this nonlinearity
has still been a genuine stumbling block to progress in this area.

In a series of studies on dynamically loaded cantilever beams, reasonable comparisons
were effected between experiments and perfectly plastic rate-sensitive theoretical analyses
[2-5]. Unfortunately, the analyses are necessarily complex and not readily extended to
more complex structures. A lumped mass-finite difference technique was successfully
employed by Pian and his associates [6], but this approach is numerically tedious and not
likely to be practical for large realistic structures.
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The obvious need for accurate approximate methods of analysis has prompted renewed
efforts in this direction [1, 7, 8]. When most of the plastic response occurs in a given mode
of deformation, Symonds suggests a uniform rate-sensitivity correction should suffice [7].
Concentrating on impulsively loaded rings and rods, Perrone has shown that good
approximations to the "exact" response are possible by assuming a constant dynamic
yield stress associated with the maximum strain rate [1]. Extensions to strain hardening
rate-sensitive behavior also appear feasible [8].

In the present paper the analysis discussed in [1] for impulsively loaded, perfectly
plastic structures will be extended to apply to finite pressure pulse loaded structures.
Accordingly, the change of yield stress with strain rate during the loading phase must be
accounted for carefully.

In the next section the "exact" solution of a rate-sensitive ring under constant pres
sure pulse is determined. Two different types of approximate solutions are discussed in
the following two sections; all solutions are compared with respect to their relative utility
in the next section. Conclusions are drawn in the final section.

COMPLETE SOLUTION TO RING UNDER PRESSURE PULSE

The. essential complication associated with plastic rate-sensitive structural response is
the nonlinear variation of strength properties with strain rate; as such, it is most appro
priate, when developing analytical techniques, to investigate structural elements that are
realistic enough to be tested in the laboratory, and yet simple enough not to introduce
adqitional complexities, (e.g. bending, geometric complications), that would becloud
rate-sensitivity aspects of the response. In this connection, the ring problem appears to
offer an ideal compromise as a structural element.

For this problem, precise operational laboratory techniques are already available [9].
In addition, exact and accurate approximate solutions have been obtained to the impulsively
loaded rate-sensitive ring [1].

In the present paper, exact and accurate simplified approximate solutions are calculated
for the pressure pulse loaded ring, Fig. 1. The solution may be delineated into two parts:
a loading or acceleration phase, and an unloading or deceleration phase. Peak strain rate
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FIG. L Pressure pulse loaded ring.
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is achieved at load termination. Actually, with but slight modification, the impulsively
loaded ring solution [1] will apply in the second phase so that the essential problem will
be to find the loading phase solution.

To begin with, let us enumerate the important assumptions made in developing the
equations of motion: strain hardening. wave propagation effects and radial stress are
ignored; the circumferential stress is uniform through the ring; the ring material is per
fectly plastic and rate-sensitive as described by Fig. 2; relatively large deformations are
permitted.
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FIG. 2. Yield stress-strain rate law.

The definition of most of the variables of interest are collected and listed as follows:
u radial velocity of the ring
up peak velocity
r0 initial ring radius
r current radius of the ring
t time
tp time needed to reach the peak velocity
h ring depth
Ao initial cross-section of the ring
A cross-section at any time t
(Jo static yield stress of the ring material
(J dynamic yield stress
Po maximum static pressure which the ring can carry (Po = (JoAo/roh)
p constant pressure applied to the ring
p mass density of ring material
e rate of strain (e u/r)
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The governing equation of motion is derived by applying Newton's Second Law to a
generic element of the ring

(1 )

As noted earlier, (1, the circumferential stress varies with strain rate in accordance with the
following expression.

I

(1 (8)n
(10 =1+ D

where D and n are material constants.
Substitution of equation (2) into equation (1) yields the result

Since the material of the ring is incompressible

Aoro = Af

and equation (3) becomes

(2)

(3)

(4)

1

d 2f [( 8 ) nJ pf
pf dt 2 = -(10 1+ D + A h.

Equation (4) is the general differential equation of motion of the ring.
The foregoing equation can be solved more conveniently by choosing f as the inde

pendent variable and u as the dependent variable. This is the case because the initial and
final conditions of the motion may be expressed more readily in terms of f and u. To effect
this variable change the following relation is used

d 2f 1 d(u 2 )

dt 2 = 2: df

As a result equation (4) assumes the following form

1

1_d(u
2

) [(8)"J pf~pr~~ = -(10 1+ - +-h.
2 df D A

(5)

It will prove convenient to work with non-dimensional quantities. To this end the
following dimensionless variables are defined:

v = U2/U~

r = f/ro

p = p/Po

IX = 2(10/(pu6)

f3 = uJ(roD)

1

}' = IX(f3)"
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Consequently, equation (5) may be expressed as

Further useful simplifications are effected via the variable change

r = l+x

where x is the ratio of the increment of ring radius to the original radius.
Substituting into equation (6) while restricting the size of deformations such that

x~1

we find the following result

dv ..!.
dx = (X(P -1) - yv 2n

•

Subject to the appropriate initial condition

v(O) = 0

the following solution is obtained to equation (7)

~+1
00 yk - 1 V 2n

X= k~1[y(P-l)]k[(k-l)/2n]+I'

521

(6)

(7)

(8)

Of course the foregoing solution is applicable only during the loading phase, that is

The ring response for the deceleration phase is readily determined using the solution
given in Ref. [1] with trivial modification. The solution cited applies for an impulsively
loaded ring with no initial displacement. For present purposes the only slight difference is
that the ring has an initial displacement (corresponding to the deformation attained at the
instant the load is removed). This difference is accounted for by modifying the initial
condition in the solution of Ref. [1]. Hence, we have now obtained the complete deforma
tion response of a rate-sensitive ring to a constant load pulse.

Representative numerical solutions are presented in Table 1 for the following choice
of parameters:

n = 5

D = 4O'4/sec

P = 5, 10

(X = 100,25,25

Y = 100,34'5,50

Deformation of the ring at the end of the load phase is x p , and the final total deformation
is Xf' Simultaneous values of P, (X and y describe the load pulse.
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APPROXIMATE SOLUTION I: CONSTANT YIELD STRESS ASSOCIATED
WITH PEAK STRAIN-RATE

Initially, we shall examine from a qualitative viewpoint the general characteristics of
the two phases of motion of the ring response. The motivation behind the selection of a
particularly useful approximate approach should then become more apparent.

Experiments have been successfully conducted on dynamically loaded rings with
impulsive type loading [9]. A typical deformation-time response curve from these tests
is reproduced in Fig. 3. For a ring load with a finite pressure pulse the curve given in Fig. 3
may be interpreted as characteristic of the deceleration phase. In other terms, the origin
of the above curve would correspond to the time when the finite pulse terminates.
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FIG. 3. Response of impulsively loaded ring [9].
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A reasonable estimate of the response during the load phase may be obtained by using
the leading (and also dominant) term of equation (8) in the equation of ,motion and
integrating for a constant pressure pulse. The resulting deformation is a quadratic function
of time (x-t curve is a parabola). Realizing that the velocity and displacement are initially
zero and must be continuous at the interface between both phases, we deduce that the
deformation response history should be of the form shown in Fig. 4a.

Obviously, during the bulk of the flow process, i.e. between Band D, the velocity,
(Fig. 4c) which is the slope of Fig. 4a does not change appreciably. Consequently, over the
same range the strain rate and hence, yield stress is substantially constant (Fig. 4b). Indeed,
we may assume to good approximation that the yield stress is a constant corresponding
to the peak strain rate, for the entire deformation range. This is equivalent to saying the
area under the curve ABCDE in Fig. 4b, which is associated with plastic work absorbed
by the ring is approximately equal to the area under the curve FCG. Consideration of a few
numerical examples will verify the validity of this tentative hypothesis. It is worth noting



Dynamic response of pulse-loaded rate-sensitive structures 523

FIG. 4-0

I
LOADING PHASE DECELERATION

PHASE

FIG. 4- b

<To YIELD STRESS

C

CT ~ax

I-_~E:._._= ~ G
-------0

E

FIG. 4-c

o
I
I
I
I

B I
---+----+--

A L..-=-r----'-------r-_
I Tp TIME

I I I
I C I
BI---~--_ID

:}...
AL..-----~---_=_--'E

TIME

>-
!::
u
o
...J
W
>

FIG. 4. Typical dynamic response curves.

that a similar approach was successfully utilized to determine the response of impulsively
load rings [1]. In that study, of course, there was no acceleration or loading phase.

Let us turn our attention to the implementation of the suggested approximation for
the loading phase. The yield stress is chosen to be a constant associated with the peak
strain rate by simply rewriting the differential equation of motion equation (7) and re
placing the term von the right hand side by its peak value, namely unity.

For a constant pressure pulse the resulting differential equation may be trivially
integrated with an initial zero velocity condition to find

(9)x~ = 1/[IX(P-l)-y].

This approximate solution is only applicable during the loading phase, i.e.

O~x~x~

Primed values will be used to denote approximate solutions.
The solution for the deceleration phase is similar to the approximate solution obtained

in Ref. [1]. The approximate total final deformation is termed xc.
To test the validity of the assumption of constant yield stress, numerical solutions

obtained utilizing equation (9) are compared with the previous exact solutions presented
in Table 1. The comparisons are shown in Table 2. It is very clear from Table 2 that the
differences between the exact and approximate deformations are of the order of a few
percent. Evidently, these results verify the assumption that most of the deformation
takes place under substantially constant yield stress.

To illustrate an important point we now study more carefully the difference between
the exact and approximate solutions for one of the foregoing cases, viz., Bp = 40·4,
IX = Y = 100, P = 10. We calculate the approximate deformation, x~, at the end of the
loading phase from two viewpoints: the yield stress is taken to be constant and equal to
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TABLE I. EXACT RING RESPONSE n = 5, D = 40-4/sec

p Cl Y ep u/uo x p Xf

5 100-0 100-0 40-4 2-00 0-00316 0-00829
5 25-0 34-5 202-0 2-38 0-01462 0·03211
5 25-0 50-0 1293·0 3-00 0-01843 0-03228

10 100-0 100-0 40-4 2-00 0-00123 0-00636
10 25 34-5 202-0 2-38 0-00516 0-02265
10 25 SO-O 1293-0 3·00 0·00546 0·01931

ep = peak strain rate_ xp = deformation at load cut-off. Xf = final total deformation_

TABLE 2_ COMPARISON OF EXACT SOLUTION AND APPROXIMATE SOLUTION I

P Cl )' ep xp x~ Xf Xc

5 100 100-0 40·4 0·003164 0-00333 0-00829 0·00834
5 25 34·5 202-0 0-01462 0-01528 0-03211 0-03222
5 25 50-0 1293·0 0'01843 0-0200 0-03228 0-03342

10 100 100·0 40-4 0-00123 0·00125 0-00636 0-00626
10 25 34-5 202-0 0-00516 0-00525 0-02265 0-02219
10 25 50·0 1293-0 0-00546 0·00572 0-01931 0·01957

X p exact deformation at load cut-off. x~ = approximate deformation at load cut-off (from solution 1)-
Xr = exact final total deformation_ Xc = approximate final total deformation (from solution I).

either its initial static value or its peak dynamic value. The results, along with the exact
solution, for comparison are displayed in Fig. 5. Obviously, the results obtained for
constant peak yield stress compare much more favorably with the exact solution than those
associated with constant static yield stress. These results reinforce further the approximate
technique which has been selected.

2.0 f-- -----" ---"..ICONSTANT PEAK YIELD STRESS I

I

I
I

1.0t-""""::::.....__=.!!..:..=~_----.ICONSTANTSTATIC YIELD STRESSl

o 40.4/SEC

FIG. 5. Comparison of load phase responses for IX = Y = 100, P 10.

By this time, a paradox may have been noticed by the discerning reader. This anomaly
is concerned with the fact that the approximate deformation at load cut-off is higher
(than its true or exact value) when we assume the yield stress constant and equal to its
maximum value. This observation disturbs the physical intuition since the ring made of
the stronger material should certainly deform a lesser amount.
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(lOa)

As we shall see, the reason for this apparent discrepancy is the slight difference in
pressure pulse length between both approaches. Earlier, for mathematical convenience,
we elected to use deformation rather than time as the independent variable. The end of the
load phase was designated as the instant when the dimensionless velocity attained unit
value. As a result, we were not able to require that the pressure pulse length be uniform
for the exact and approximate solutions. However, we will proceed to prove for the
numerical case under discussion, that the pulse lengths for the exact and constant peak
yield stress cases agree within 2 percent. The pulse length associated with the exact
solution is found by rewriting the equation of motion (equation (7)], reverting back to
time as the independent variable, and integrating to find

2ro I1
d(ujup)

(tp)exacl = - -----'--'----''''-----,-1·
uo 0

(I,(P-I)-y(uju p)"

For the constant peak yield stress case the pulse length is determined by integrating
equation (7) again with time as the independent variable and with. the term v(= u2 ju;)
on the right hand side set equal to unity.

1 2roj[ x~ ]
t p = ~ (I,(P-l)-y'

(lOb)

For the numerical case under discussion (I, = y = 100, P = 10 the foregoing time pulses
assume the following values:

t p = 2ro(0.OO1225)
uo

t~ = 2ro(0·00125).
uo

Obviously, the time pulse for the constant peak yield stress case is 2 percent longer than
for the exact case. Adjustment of the constant peak yield stress pulse length so that it
coincides with the exact one results in an exact deformation which is only 2 percent higher
than the approximate one.

The essential conclusions are, (a), the anomaly is explained and, (b), no serious error
arises by not explicitly considering pressure pulse lengths.

APPROXIMATE SOLUTION II: CONSTANT YIELD STRESS VIA
MOMENTUM IMPULSE

In the previous section a very good approximation to the response of a ring with a
rectangular pressure pulse is obtained by taking the yield stress to be a constant associated
with the peak strain rate. The simplifications attendant with this problem are such that it
is a trivial task to determine the peak strain rate once the governing parameters of the
problem are prescribed. On the other hand for structures with varying load pulses, the
same situation does not prevail, and it behooves us to develop a more efficient alternate
approximate approach.
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(11)

As observed earlier, the variation of yield stress with strain rate is very slow (see Fig. 2).
Moreover, it has been clearly established that most of the plastic flow occurs at the yield
stress corresponding to the peak strain rate. Hence, an obvious alternative would be to
estimate in some way the peak strain rate, determine the associated yield stress, take this
yield stress to be a constant and proceed to solve as before.

To estimate the peak strain rate, we assume that the pressure pulse is applied impulsively.
This is roughly equivalent to saying that in the loading phase the ring hoop stress is not a
dominant factor in the ring response. Let us apply this approximate impulsive approach,
initially for a constant and subsequently for an arbitrary pressure pulse.

The equation of impulse for an element of the ring may be expressed as follows:

Fdt = mdu

where (F dt) represents the impulse itselfand (m du) the change in momentum. Substituting
for F and m their respective values in the equation of impulse we find:

ph dt = pAo duo

Integration of the foregoing equation yields the result

ph
u = --t.

pAo

Obviously, the peak velocity is given as

ph
up = pAotp.

If we now non-dimensionalize with respect to p we find

Pao
u =--t

P pro P

and dividing by ro we obtain the peak strain rate

For convenience let

C = ao/(pr5)

realizing C is constant for any ring, then equation (13) becomes

(12)

(13)

(14)

Obviously, the strain rate is directly propositional to the quantity (Pt), the area under
the pressure-time curve.

Equation (14) can be generalized for any kind ofarbitrary pressure distribution without
any difficulty

J
f P

ep = C 0 Pdt. (15)
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We can conclude from equation (15) that the approximate maximum strain rate is directly
proportional to the area under the pressure-time distribution. Therefore once the distribu
tion is given, Bp can be estimated easily. From equation (2) up (the yield stress when t = t p)

can be obtained and substituted into the basic differential equation of motion, equation (7).
The solution will be similar to the one obtained in equation (9).

By utilizing the load cut-off time t p calculated in the previous section, an estimate
of the peak strain rate (Bp impulse) is immediately forthcoming from equation (14).

A complete tally of all numerical results is displayed in Table 3. In view of the slow
variation of yield stress with strain rate, the estimates of the strain rates by the momentum
impulse approach are obviously adequate. Indeed, the excellent comparison between exact
and approximate deflections attests to this fact.

COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS

In the preceding sections solutions are obtained to the pressure pulse loaded ring
utilizing a very accurate analysis (which we call "exact") and two approximate analyses
(termed, for brevity, peak strain rate and momentum-impulse approximations).

Both approximate solutions employ a constant yield stress which unlike the exact
case, does not vary with strain rate. With the peak strain rate approximation the yield
stress is given the constant value associated with its peak strain rate; with the momentum
impulse approximation the yield stress is assigned a constant value corresponding to the
strain rate calculated by assuming the load to be impulsively applied.

It is clear from Table 3 that the exact and approximate solutions of the ring problem
differ by only a few percent. This observation is true for a wide variety of combinations of

TABLE 3. COMPARISON OF EXACT AND BOTH APPROXIMATE SOLUTIONS (J AND II)

P IX Y Ep(eUCI) E~(II) Xp(euct) X~l) X~I1) Xf(cX'act) XC(I) XC(l1)

5 100 100·0 40·4 50 0·00316 0·00333 0·00342 0·00829 0·00834 0·00833
5 25 34·5 202·0 250 0·01462 0·01528 0·01564 0·03211 0·03222 0·03214
5 25 50·0 1293·0 1625 {j'01843 0·0200 0·02084 0·03228 0·03342 0·03404

10 100 100-0 40'4 44 0·00123 0·00125 0·00125 0·00636 0·00626 0·00621
10 25 34·5 202'0 222 0·00516 0·00525 0·00527 0·02265 0·02219 0·02199
10 25 50-0 1293·0 1443 0·00546 0·00572 0·00575 0·01931 0·01957 0·01927

Approximate solutions denoted by primed quantities. p = subscripts refer to end ofIoad phase. f = subscripts
refer to final deformations. (I), (II) refer to approximate solutions.

variables. Differences between the solutions decrease as the ratio of the applied pressure P
to the static pressure Po increases. These results are to be expected since by increasing p
we approach the impulsive situation.

All the numerical results presented in Tables 2 and 3 are plotted for comparison in
Figs. 6 and 7. Exact values are plotted on the ordinate and approximate values on the
abscissa. Obviously, the extent to which the approximate values cluster around a 45° line
is an index of the accuracy of the approximate solutions. Evidently, both approximations
offer very good comparisons with exact solutions. Moreover, there is no discernible
difference between the relative accuracy of the two approximations, i.e. both are equally
good.
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With respect to the difficulty and growth potential of the three solutions it is quite
clear that the exact approach has the lowest prospects as it is the most difficult to apply
and could be expected to get appreciably more difficult for complex realistic structures
and loads. Although the peak strain rate approximation represents a significant simplifica
tion over the exact approach it is seriously limited by the difficulty in practical problems
of determining the peak strain rate where the pressure is not constant. The momentum
impulse approach clearly holds the greatest promise for eventual practical application.

DISCUSSION

In the present paper exact and approximate solutions are obtained to a pressure pulse
loaded ring made of a perfectly plastic, nonlinear rate-sensitive material.

The essential assumption of both approximate solutions is that the bulk of the plastic
flow for both phases of motion, (loading acceleration phase and unloading deceleration
phase), occurs at a substantially constant yield stress associated with the maximum or
peak strain rate. The second approximate solution differs from the first in that the peak
strain rate yield stress, rather than being rigorously calculated, is only estimated via a
momentum-impulse approach.

Both approximate approaches offer very fine numerical comparisons with exact
solutions, deviations being of the order of a few per cent.

The momentum-impulse approach clearly merits the greatest attention for considera
tion of more complex structures, (e.g. variable pressure-pulse load, strain hardened plates
or shells). To cite a specific example, it would appear quite straightforward to extend a
recent impulsively loaded rate sensitive plate solution [10] to account for a finite pressure
pulse load by this technique.

It is likely that the momentum/impulse approach would apply for problems such as
discussed in Ref. [7] wherein most of the plastic response occurs in a given deformation
mode.

When we reflect to consider that in addition to the rate-sensitive plastic structure
analysis cited here, temperature-dependent yield structures are readily accounted for [11],
it becomes apparent that we are rapidly approaching the threshold wherein practical
engineering problems such as hypervelocity impact and explosive metal forming will
submit to rational analytical study.

We end on a note of caution. The treatment presented here is contingent upon a
perfectly plastic rate-sensitive power law, such as shown in Fig. 2. However, strain harden
ing behavior should require but a simple extension of the present results [8]. Experimental
evidence to date has shown that many, ifnot most, structural metals do satisfy such material
behavior laws.

Of course, plastic action is presumed to dominate over elastic action; and geometric
non-linearities which may be significant in some practical applications are ignored.
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A6c:TpaKT-B npet\b1AYllIeA pa60Te (1), BbIBOt\HTCIl cOlcpaweHHblA, 06WUA MeTOt\ Mil olIpet\eJIeHHII

peaKI.\HA BHe3anHO HarpYlKeHHbIx, Ht\eaJIbHO nJIaCTH'IecKHx, '1YBCTBHTeJIbHblX K CKOPOCTH t\e4>oPMal.\HH

KOHCTPYKl.\HA, 06JIalOWHX BbICOKO HeJIHHeAHbIMH 3aKOHaMH Hanp"lKeHHe Te'leHHII-<:KopOCTb t\e<j)op

Mal.\HH.
BHacTollweA pa60Te pa3BHBaeTClI JTOT nOt\xot\ C l.\CJlblO OIIHcaHHII <jla3bl IIpHMeHeHHII t\HHaMH'IecKoii.

Harpy3KH. I1Ha'ie rOBOplI, HCCJIet\yeTclI MaTeMaTH'IecKall MO,lleJIb, 6JIH3Kall <j)H3H'IecKOMY IIBJIeHHIO, a

HMeHHo, JJIeMeHT KOHCTPYKl.\HH HarpylKeH ,llaBJIeHHeM a He HMnYJIhCHOA HarpY3KoA.

B Ka'lecTBe 06pa3l.\a 06weli KOHCTPYKl.\HH HCCJIet\yeTclI TOHKoe KOJIbl.\O, HarpylKeHHoe t\HHaMH'IeCKH.

Onpet\eJIIIIOTCII CTporHe H npH6JIHlKeHHbIe peaKl.\HH t\JIII nOCTOIlHHOA nYJIhCal.\HH t\aBJIeHHII. Pa3HHl.\a

MelKAY HHMH COCTaBJIlIeT TOJIbKO HeCKOJIbKO np0l.\eHTOB. B npH6JIHlKeHHOM peweHHH HanplIlKeHHe TeKY

'1ecTH IIBJIlIeTCII nOCTOIlHHbIM, CBII3aHHbIM C nHKOBoli CKOpOCTblO t\e<j)opMal.\HH InTO B03HHKaeT npH MOM

eHTe OKOH'IaHHII HarpYlKeHHII/.

Pe3YJIbTaTbi YKa3bIBalOT Ha TO, 'ITO B CJIy'lae Kort\a t\elicTByeT npeo6JIat\alOwall nJIaCTH'IeCKali <j)poMa

t\e<j)pOMal.\HH Tort\a MOlKHO onpet\eJIHTb peaKl.\HIO KOHCTPYKl.\HH, 3arpYlKeHHoA npOH3BOJIbHOli nYJIbCa

l.\HeA nyreM nOBblweHHII JTOrO HMnYJIbCa-yCJIOBHII H3MeHeHHlI KOJIH'IeCTBa t\BHlKeHHII, TaK Kort\a npH

npeHH6pelKeHHH CHJI, POCT KOTOpblX Bb13bIBaeT t\e<j)opMal.\HH, IIBJIlIeTCII B03MOlKHbiM onpet\eJIHTb HaqaJI

bHoe pacnpet\eJIeHHe CKOpOCTH t\e<j)opMaUHH. MOlKHO onpell.eJIHTb TaKlKe CBlI3aHHoe pacnpell.eJleHHe

HanplllKeHHII TeKyqecTH, KOTopoe lIBJIlIeTCII nOCTOIlHHblM B KalKt\oli TOqKe nOJIII BO BpeMII t\BHlKeHHII BCex

TOqeK.


